首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10001篇
  免费   497篇
  国内免费   139篇
  2023年   121篇
  2022年   104篇
  2021年   195篇
  2020年   186篇
  2019年   230篇
  2018年   260篇
  2017年   198篇
  2016年   211篇
  2015年   233篇
  2014年   603篇
  2013年   639篇
  2012年   335篇
  2011年   669篇
  2010年   473篇
  2009年   554篇
  2008年   539篇
  2007年   563篇
  2006年   472篇
  2005年   563篇
  2004年   411篇
  2003年   290篇
  2002年   278篇
  2001年   146篇
  2000年   162篇
  1999年   157篇
  1998年   148篇
  1997年   148篇
  1996年   123篇
  1995年   134篇
  1994年   114篇
  1993年   137篇
  1992年   109篇
  1991年   107篇
  1990年   105篇
  1989年   77篇
  1988年   71篇
  1987年   56篇
  1986年   50篇
  1985年   44篇
  1984年   156篇
  1983年   89篇
  1982年   84篇
  1981年   74篇
  1980年   59篇
  1979年   58篇
  1978年   21篇
  1977年   24篇
  1976年   12篇
  1975年   12篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
We recently described a new protein associated exclusively with neuronal clathrin-coated vesicles (CCVs), and characterized two monoclonal antibodies that react with it (S-8G8 and S-6G7). In this report, the association of neuronal protein of 185 kilodaltons (NP185) with CCV kinases and its interaction with tubulin are described. The affinity of NP185 for tubulin is significantly enhanced when tubulin is phosphorylated by CCV-associated casein kinase II. In contrast, phosphorylation of tubulin by a kinase activity associated with purified brain tubulin decreases its affinity for NP185. Together, these data suggest that the interaction of NP185 with tubulin is modulated by protein phosphorylation. Recent evidence has suggested that tubulin is phosphorylated by casein kinase II during neurite development. The enhanced affinity of NP185 for tubulin phosphorylated by casein kinase II could be important for proper intracellular sorting of this protein in the developing neuron.  相似文献   
102.
From the soluble and membrane fractions of rat brain homogenate, two enzymes that liberate dipeptides of the type Xaa-Pro from chromogenic substrates were purified to homogeneity. The two isolated dipeptidyl peptidases had similar molecular and catalytic properties: For the native proteins, molecular weights of 110,000 were estimated; for the denatured proteins, the estimate was 52,500. Whereas the soluble peptidase yielded one band of pI 4.2 after analytical isoelectric focusing, two additional enzymatic active bands were detected between pI 4.2 and 4.3 for the membrane-associated form. As judged from identical patterns after neuraminidase treatment, both peptidases contained no sialic acid. A pH optimum of 5.5 was estimated for the hydrolysis of Gly-Pro- and Arg-Pro-nitroanilide. Substrates with alanine instead of proline in the penultimate position were hydrolyzed at comparable rates. Acidic amino acids in the ultimate N-terminal position of the substrates reduced the activities of the peptidases 100-fold as compared with corresponding substrates with unblocked neutral or, especially, basic termini. The action of the dipeptidyl peptidase on several peptides with N-terminal Xaa-Pro sequences was investigated. Tripeptides were rapidly hydrolyzed, but the activities considerably decreased with increasing chain length of the peptides. Although the tetrapeptide substance P 1-4 was still a good substrate, the activities detected for the sequential liberation of Xaa-Pro dipeptides from substance P itself or casomorphin were considerably lower. Longer peptides were not cleaved. The peptidases hydrolyzed Pro-Pro bonds, e.g., in bradykinin 1-3 or 1-5 fragments, but bradykinin itself was resistant. The enzymes were inhibited by serine protease inhibitors, like diisopropyl fluorophosphate or phenylmethylsulfonyl fluoride, and by high salt concentrations but not by the aminopeptidase inhibitors bacitracin and bestatin. Based on the molecular and catalytic properties, both enzymes can be classified as species of dipeptidyl peptidase II (EC 3.4.14.2) rather than IV (EC 3.4.14.5). However, some catalytic properties differentiate the brain enzyme from forms of dipeptidyl peptidase II of other sources.  相似文献   
103.
Summary In the filamentous fungus Podospora anserina, the amplification as circular DNA molecules of the first intron (intron ) of the CO1 mitochondrial gene, encoding the cytochrome oxidase subunit 1, is known to be strongly associated with aging of strains. In this study we have attempted to detect the protein potentially encoded by the open reading frame (ORF) contained in this intron. This was done by the Western blot technique using specific antisera raised against three polypeptides encoded by three non-overlapping fragments of this ORF adapted to the universal code and overexpressed in Escherichia coli. We examined about thirty independent subclones of Podospora derived from two different geographic races (A, s), using wild-type and mutant strains, young and senescent cultures. A 100 kDa polypeptide, encoded by the class II intron , was detected in five senescent subclones which all showed strong amplification of the intronic sequence (Sen DNA ).  相似文献   
104.
Copper deficiency in wheat ( Triticum aestivum L. cv. Nazareno Stramppeli) markedly affects photosynthetic activity. Flag leaves of copper-deficient plants showed a 50% reduction of the photosynthetic rate expressed as mg CO2 dm−2h−1. The activities of PSI and PSII, determined for isolated chloroplasts, as well as fluorescence measurements on intact leaves of copper-deficient plants, indicated a low activity of photosynthetic electron transport. Ribulose bisphosphate carboxylase/oxygenase (Rubisco) activity was not affected by copper deficiency but copper deficiency affected the chloroplast ultrastructure, especially at the level of grana, where a disorganization of thylakoids is evident.  相似文献   
105.
Attached leaves of pumpkin ( Cucurbita pepo L. cv. Jattiläismeloni) were exposed to high light intensity at room temperature (ca 23°C) and at 1°C. Fluorescence parameters and electron transport activities measured from isolated thylakoids indicated faster photoinhibition of PSII at low temperature. Separation of the α and β components of the complementary area above the fluorescence induction curve of dichlorophenyl-dimethylurea-poisoned thylakoids revealed that at low temperature only the α-centers declined during exposure to high light intensity while the content of functional β-centers remained constant. Freeze-fracture electron microscopy showed no decrease in the density of particles on the appressed exoplasmic fracture face, indicating that the photoinhibited α-centers remained in the appressed membranes at 1°C. Because of the function of the repair and protective mechanisms of PSII, strong light induced less photoinhibition at room temperature, but more complicated changes occurred in the α/β-heterogeneity of PSII. During the first 30 min at high light intensity the decrease in α-centers was almost as large as at 1°C, but in contrast to the situation at low temperature the decrease in α-centers was compensated for by a significant increase in PSIIβ-centers. Changes in the density and size of freeze-fracture particles suggest that this increase in β-centers was due to migration of phosphorylated light-harvesting complex from appressed to non-appressed thylakoid membranes while the PSII core remained in the appressed membranes. This situation, however, was only transient and was followed by a rapid decrease in the functionalβ-centers.  相似文献   
106.
Genetically transformed grapevine (Vitis vinifera L.) roots were obtained after inocultation of in vitro grown whole plants (cv. Grenache) with Agrobacterium rhizogenes. The strain used contains two plasmids: the wild-type Ri plasmid pRi 15834 and a Ti-derived plasmid which carries a chimaeric neomycin phosphotrans-ferase gene (NPT II) and the nopaline synthase gene. Expression of the NPT II gene can confer kanamycin resistance to transformed plant cells. Slowly growing axenic root cultures derived from single root tips were obtained. Opine analysis indicated the presence of agropine and/or nopaline in established root cultures. For one culture, the presence of T-DNA was confirmed by dot-blot hybridization with pRi 15834 TL-DNA. Callogenesis was induced by subculturing root fragments on medium supplemented with benzylaminopurine and indoleacetic acid.Transformation of in vitro cultured grapevine cells has recently been reported (baribault T.J. et al., Plant Cell Rep (1989) 8: 137–140). In contrast with the results presented here, expession of the NPT II gene Conferred kanamycin resistance to Vitis vinifera calli that was sufficient for selection of trasformed cells.Abbreviations BAP benzylaminopurine - IAA indoleacetic acid - NAA naphtaleneacetic acid - NPT II neomycin phosphostransferase II - EDTA ethylenediaminetetraacetic acid  相似文献   
107.
The hemolysis of red blood cells (RBC) induced by Cu(II) is modified by ceruloplasmin (Cp) and albumin. The time course of hemolysis for rabbit RBC by Cu(II) consisted of two parts, an induction period followed by a catastrophic lysis period. The induction period decreased and the lysis rate increased with increasing Cu(II) concentration. Cp or albumin, modified Cu(II) induced hemolysis, by increasing the duration of the induction period and decreasing the overall rate of hemolysis of RBC. The catastrophic lysis period coincided with a sharp increase in the formation of metHb within the cell and in a rapid uptake of Cu(II). The presence of Cp led to an increase in the induction period prior to the rapid increase in metHb formation and in Cu(II) uptake. Porcine Cp was prepared with either two or three nonprosthetic copper binding sites (sites where Cu(II) is easily removed by passing over Chelex-100). Cp with three nonprosthetic binding sites gave more protection than Cp with two. Likewise, albumin can be prepared with three and five nonprosthetic copper binding sites. The albumin with five sites gave more protection than the albumin with three sites.  相似文献   
108.
The effects of light-induced non-photochemical quenching on the minimal Fo, and variable Fv, fluorescence emissions at 690 and 730 nm in leaves were determined. Non-photochemical quenching of Fo, but not Fv, was found to be dependent upon the wavelength of emission, and was greater at 690 nm than at 730 nm. For emission at 730, compared to at 690 nm, approx. 30% of Fo was not affected by non-photochemical quenching processes in leaves of C3 plants; in maize leaves this was found to be approx. 50%. The data indicate that a substantial proportion of the pigments contributing to Fo emission at 730 nm are not quenched by light-induced, non-photochemical quenching processes and that there are large differences in the pigment matrices contributing to Fo and Fv emissions at 730 nm, compared to those at 690 nm. These findings have important implications for the accurate estimation and interpretation of non-photochemical quenching of fluorescence parameters and their use in the calculation of photochemical efficiencies in leaves. Measurements of fluorescence emissions at wavelengths above 700 nm are likely to give rise to significant errors when used for determinations of photochemical and non-photochemical quenching parameters.  相似文献   
109.
The green alga Chlamydomonas reinhardtii is a facultative heterotroph and, when cultured in the presence of acetate, will synthesize chlorophyll (Chl) and photosystem (PS) components in the dark. Analysis of the thylakoid membrane composition and function in dark grown C. reinhardtii revealed that photochemically competent PS II complexes were synthesized and assembled in the thylakoid membrane. These PS II centers were impaired in the electron-transport reaction from the primary-quinone electron acceptor, QA, to the secondary-quinone electron acceptor, QB (QB-nonreducing centers). Both complements of the PS II Chl a–b light harvesting antenna (LHC II-inner and LHC II-peripheral) were synthesized and assembled in the thylakoid membrane of dark grown C. reinhardtii cells. However, the LHC II-peripheral was energetically uncoupled from the PS II reaction center. Thus, PS II units in dark grown cells had a -type Chl antenna size with only 130 Chl (a and b) molecules (by definition, PS II units lack LHC II-peripheral). Illumination of dark grown C. reinhardtii caused pronounced changes in the organization and function of PS II. With a half-time of about 30 min, PS II centers were converted froma QB-nonreducing form in the dark, to a QB-reducing form in the light. Concomitant with this change, PS II units were energetically coupled with the LHC II-peripheral complement in the thylakoid membrane and were converted to a PS II form. The functional antenna of the latter contained more than 250 Chl(a+b) molecules. The results are discussed in terms of a light-dependent activation of the QA-QB electron-transfer reaction which is followed by association of the PS II unit with a LHC II-peripheral antenna and by inclusion of the mature form of PS II (PS II) in the membrane of the grana partition region.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - F0 non-variable fluorescence yield - Fplf intermediate fluorescence yield plateau leyel - Fmax maximum fluorescence yield - Fi initial fluorescence yield increase from F0 to Fpl (Fpl–F0) - Fv total variable fluorescence yield (Fm–F0) - DCMU dichlorophenyl-dimethylurea  相似文献   
110.
In the last few years our knowledge of the structure and function of Photosystem II in oxygen-evolving organisms has increased significantly. The biochemical isolation and characterization of essential protein components and the comparative analysis from purple photosynthetic bacteria (Deisenhofer, Epp, Miki, Huber and Michel (1984) J Mol Biol 180: 385–398) have led to a more concise picture of Photosystem II organization. Thus, it is now generally accepted that the so-called D1 and D2 intrinsic proteins bind the primary reactants and the reducing-side components. Simultaneously, the nature and reaction kinetics of the major electron transfer components have been further clarified. For example, the radicals giving rise to the different forms of EPR Signal II have recently been assigned to oxidized tyrosine residues on the D1 and D2 proteins, while the so-called Q400 component has been assigned to the ferric form of the acceptor-side iron. The primary charge-separation has been meaured to take place in about 3 ps. However, despite all recent major efforts, the location of the manganese ions and the water-oxidation mechanism still remain largely unknown. Other topics which lately have received much attention include the organization of Photosystem II in the thylakoid membrane and the role of lipids and ionic cofactors like bicarbonate, calcium and chloride. This article attempts to give an overall update in this rapidly expanding field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号